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2. Radioactive chains of decay 
The differential equation for the number N of radioactive Nuclei, which have not yet decayed is 
well known from elementary high school.  
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It has the equally well known solution 
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The activity is the rate of decay 
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Th constant k is the decay constant, and is equal to ln2 divided by the half life T½ , since  
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We shall then look at a chain, where the original nucleus decays into another radioactive nucleon. 
This is well known from the common chains of decay: The Uranium-, the Thorium-, and the 
Actinium series.  
 
If we denote the two nuclei by (1) and (2), we may establish two differential equations.  
The first one is identical to (2.1), with decay constant k1, whereas the second expresses that 
nucleus (2) is produced with a speed that is equal the activity of nucleus (1), subsequently decays 
with the decay constant k2. 
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The last differential equation has the form 
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It is solved by moving the term –k·y to the left hand side, multiplying the equation by ekx , and 
rewrite it as a single differential quotient. 
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If   dxexhxH xk)()(  , then the differential equation has the solution: 
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The constant c is the usual constant of integration, which is to be determined by the initial 
conditions. 
 
Replacing x with t, y with N2  , and h(x) with N1(t) in (2.3) and following the same manipulations 
with the new variables, we find: 
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The constant c is determined by N2(0) = 0  => 
12
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 , and the solution is hereafter: 
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Notice that N2  > 0 for t > 0, whether k2  > k1 or not. (The case k2 = k1 , has only academic interest, 
but the solution is: tkteNkN  2

012 ). 

 
The result (2.6) is relatively easy to interpret, since the first two factors are the number of (1) 
nuclei, which have decayed to (2) nuclei, but have not yet decayed, and the last factor is the law of 
decay for the (2)  nuclei. 
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If the chain of decay is longer than three nuclei a solution to the differential equations can in 
principle be found in the same manner, as one should just replace the expression for )(1 tN  with 

the expression for )(2 tN  in the differential equation for )(3 tN .  

 
Solutions of the type (2.6) can be applied to determine the age of radioactive materials.  
In praxis we know the two decay constants k1 and k2 together with the ratio N2/N1.  
Then the following equation (2.7) can be applied to find the time t which has elapsed since the 
material N1 was created. This has been one of the first reliable methods to determine the correct 
age of the earth. 
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 If k2    >  k1  then:    
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